97久久久精品综合88久久_亚洲国产精品一_久热热国产久热_97操操操_北条麻妃在线免费观看_精品国自产拍天天拍

掃碼關注公眾號           掃碼咨詢技術支持           掃碼咨詢技術服務
  
客服熱線:400-901-9800  客服QQ:4009019800  技術答疑  技術支持  質量反饋  關于我們  聯系我們
女人扒下裤让男人桶到爽 ,毛片一毛片二毛片三国产片,黄色网址视频免费
首頁 > 產品中心 > 標記一抗 > 產品信息
Rabbit Anti-HIV1 gp120/BF350 Conjugated antibody (bs-0241R-BF350)
訂購熱線:400-901-9800
訂購郵箱:sales@bioss.com.cn
訂購QQ:  400-901-9800
技術支持:techsupport@bioss.com.cn
說 明 書: 100ul  
100ul/2980.00元
大包裝/詢價
產品編號 bs-0241R-BF350
英文名稱 Rabbit Anti-HIV1 gp120/BF350 Conjugated antibody
中文名稱 BF350標記的艾滋病病毒抗體
別    名 HIV-1 ENV (gp120); HIV1 gp120; HIV1gp120; HIV-1 gp120; Envelope surface glycoprotein gp120; Glycoprotein 120; gp120; gp120 glycoprotein; Human Immunodeficiency Virus 1; SU; Surface protein; ENV_HV1MN; Envelope glycoprotein gp160; Env polyprotein; Surface protein gp120; SU.  
規格價格 100ul/2980元 購買        大包裝/詢價
說 明 書 100ul  
研究領域 細菌及病毒  
抗體來源 Rabbit
克隆類型 Polyclonal
交叉反應
產品應用 IF=1:50-200 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量 53/91kDa
性    狀 Lyophilized or Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from HIV1 Surface protein gp120
亞    型 IgG
純化方法 affinity purified by Protein A
儲 存 液 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol
保存條件 Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
產品介紹 background:
The attachment of enveloped viruses to cells and the fusion of viral and cellular membranes are critical early events in the HIV viral infection. This process is mediated by envelope glycoproteins (gp) on the surface of the virus. The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein, gp160, is proteolytically cleaved into gp120 and gp41, which remain noncovalently associated with one another. gp120 is one of the proteins that forms the envelope of HIV. gp120 projects from the surface of HIV and binds to the CD4 molecule on helper T cells. gp120 has been a logical experimental HIV vaccine because the outer envelope is the first part of the virus that encounters antibody. gp41 is embedded in the outer envelope of HIV that anchors gp120. gp41 also plays a key role in HIV's infection of CD4+ T cells by facilitating the fusion of the viral and cell membranes. The nomenclature of the gp proteins describes their respective molecular masses (e.g., gp160, gp120, gp41).

Function:
The surface protein gp120 (SU) attaches the virus to the host lymphoid cell by binding to the primary receptor CD4. This interaction induces a structural rearrangement creating a high affinity binding site for a chemokine coreceptor like CXCR4 and/or CCR5. This peculiar 2 stage receptor-interaction strategy allows gp120 to maintain the highly conserved coreceptor-binding site in a cryptic conformation, protected from neutralizing antibodies. Since CD4 also displays a binding site for the disulfide-isomerase P4HB/PDI, a P4HB/PDI-CD4-CXCR4-gp120 complex may form. In that complex, P4HB/PDI could reach and reduce gp120 disulfide bonds, causing major conformational changes in gp120. TXN, another PDI family member could also be involved in disulfide rearrangements in Env during fusion. These changes are transmitted to the transmembrane protein gp41 and are thought to activate its fusogenic potential by unmasking its fusion peptide.
Surface protein gp120 (SU) may target the virus to gut-associated lymphoid tissue (GALT) by binding host ITGA4/ITGB7 (alpha-4/beta-7 integrins), a complex that mediates T-cell migration to the GALT. Interaction between gp120 and ITGA4/ITGB7 would allow the virus to enter GALT early in the infection, infecting and killing most of GALT's resting CD4+ T-cells. This T-cell depletion is believed to be the major insult to the host immune system leading to AIDS.
The surface protein gp120 is a ligand for CD209/DC-SIGN and CLEC4M/DC-SIGNR, which are respectively found on dendritic cells (DCs), and on endothelial cells of liver sinusoids and lymph node sinuses. These interactions allow capture of viral particles at mucosal surfaces by these cells and subsequent transmission to permissive cells. DCs are professional antigen presenting cells, critical for host immunity by inducing specific immune responses against a broad variety of pathogens. They act as sentinels in various tissues where they take up antigen, process it, and present it to T-cells following migration to lymphoid organs. HIV subverts the migration properties of dendritic cells to gain access to CD4+ T-cells in lymph nodes. Virus transmission to permissive T-cells occurs either in trans (without DCs infection, through viral capture and transmission), or in cis (following DCs productive infection, through the usual CD4-gp120 interaction), thereby inducing a robust infection. In trans infection, bound virions remain infectious over days and it is proposed that they are not degraded, but protected in non-lysosomal acidic organelles within the DCs close to the cell membrane thus contributing to the viral infectious potential during DCs' migration from the periphery to the lymphoid tissues. On arrival at lymphoid tissues, intact virions recycle back to DCs' cell surface allowing virus transmission to CD4+ T-cells. Virion capture also seems to lead to MHC-II-restricted viral antigen presentation, and probably to the activation of HIV-specific CD4+ cells.
The transmembrane protein gp41 (TM) acts as a class I viral fusion protein. Under the current model, the protein has at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During fusion of viral and target intracellular membranes, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes. Complete fusion occurs in host cell endosomes and is dynamin-dependent, however some lipid transfer might occur at the plasma membrane. The virus undergoes clathrin-dependent internalization long before endosomal fusion, thus minimizing the surface exposure of conserved viral epitopes during fusion and reducing the efficacy of inhibitors targeting these epitopes. Membranes fusion leads to delivery of the nucleocapsid into the cytoplasm (By similarity).
The envelope glyprotein gp160 precursor down-modulates cell surface CD4 antigen by interacting with it in the endoplasmic reticulum and blocking its transport to the cell surface.
The gp120-gp41 heterodimer seems to contribute to T-cell depletion during HIV-1 infection. The envelope glycoproteins expressed on the surface of infected cells induce apoptosis through an interaction with uninfected cells expressing the receptor (CD4) and the coreceptors CXCR4 or CCR5. This type of bystander killing may be obtained by at least three distinct mechanisms. First, the interaction between the 2 cells can induce cellular fusion followed by nuclear fusion within the syncytium. Syncytia are condemned to die from apoptosis. Second, the 2 interacting cells may not fuse entirely and simply exchange plasma membrane lipids, after a sort of hemifusion process, followed by rapid death. Third, it is possible that virus-infected cells, on the point of undergoing apoptosis, fuse with CD4-expressing cells, in which case apoptosis is rapidly transmitted from one cell to the other and thus occurs in a sort of contagious fashion.
The gp120-gp41 heterodimer allows rapid transcytosis of the virus through CD4 negative cells such as simple epithelial monolayers of the intestinal, rectal and endocervical epithelial barriers. Both gp120 and gp41 specifically recognize glycosphingolipids galactosyl-ceramide (GalCer) or 3' sulfo-galactosyl-ceramide (GalS) present in the lipid rafts structures of epithelial cells. Binding to these alternative receptors allows the rapid transcytosis of the virus through the epithelial cells. This transcytotic vesicle-mediated transport of virions from the apical side to the basolateral side of the epithelial cells does not involve infection of the cells themselves.

Subunit:
The mature envelope protein (Env) consists of a homotrimer of non-covalently associated gp120-gp41 heterodimers. The resulting complex protrudes from the virus surface as a spike. There seems to be as few as 10 spikes on the average virion. Surface protein gp120 interacts with human CD4, CCR5 and CXCR4, to form a P4HB/PDI-CD4-CXCR4-gp120 complex. Gp120 also interacts with the C-type lectins CD209/DC-SIGN and CLEC4M/DC-SIGNR (collectively referred to as DC-SIGN(R)). Gp120 and gp41 interact with GalCer. Gp120 interacts with human ITGA4/ITGB7 complex; on CD4+ T-cells, this interaction results in rapid activation of integrin ITGAL/LFA-1, which facilitate efficient cell-to-cell spreading of HIV-1. Gp120 interacts with cell-associated heparan sulfate; this interaction increases virus infectivity on permissive cells and may be involved in infection of CD4- cells.

Subcellular Location:
Transmembrane protein gp41: Virion membrane; Single-pass type I membrane protein. Host cell membrane; Single-pass type I membrane protein. Host endosome membrane; Single-pass type I membrane protein (Potential). Note=It is probably concentrated at the site of budding and incorporated into the virions possibly by contacts between the cytoplasmic tail of Env and the N-terminus of Gag.
Surface protein gp120: Virion membrane; Peripheral membrane protein (By similarity). Host cell membrane; Peripheral membrane protein (By similarity). Host endosome membrane; Peripheral membrane protein (Potential). Note=The surface protein is not anchored to the viral envelope, but associates with the extravirion surface through its binding to TM. It is probably concentrated at the site of budding and incorporated into the virions possibly by contacts between the cytoplasmic tail of Env and the N-terminus of Gag.

Post-translational modifications:
Specific enzymatic cleavages in vivo yield mature proteins. Envelope glycoproteins are synthesized as a inactive precursor that is heavily N-glycosylated and processed likely by host cell furin in the Golgi to yield the mature SU and TM proteins. The cleavage site between SU and TM requires the minimal sequence [KR]-X-[KR]-R. About 2 of the 9 disulfide bonds of gp41 are reduced by P4HB/PDI, following binding to CD4 receptor.

Database links:




Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.


人類免疫缺陷病毒Ⅰ型(HIV-1)的包膜糖蛋白gp120、gp41
HIV感染后可刺激機體產生囊膜蛋白(Gp120,Gp41)抗體
病毒呈球形,直徑100~120nm,電鏡下可見一致密的圓錐狀核心,內含病毒RNA分子和酶(逆轉錄酶、整合酶、蛋白酶),病毒外層囊膜系雙層脂質蛋白膜,其中嵌有gp120和gp41,分別組成刺突和跨膜蛋白。

版權所有 2004-2026 www.kastlife.cn 北京博奧森生物技術有限公司
通過國際質量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號: 00124Q34771R2M/1100
通過國際醫療器械-質量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號: CQC24QY10047R0M/1100
京ICP備05066980號-1         京公網安備110107000727號
主站蜘蛛池模板: 精品十八禁免费观看 | 亚洲久av| 两性毛片 | 久久久久亚洲天堂 | 亚洲Aⅴ天堂Av天堂无码麻豆 | 日本不卡一区二区三区四区 | 四虎精品免费 | 伊人精品视频在线观看 | 在线看免费无码av天堂的 | 麻豆精品国产入口 | 与丰满少妇做爽视频 | 两性色午夜视频免费播放 | 精品无码日韩一区二区三区不卡 | 中国熟妇videosexfreeXXXX片 | 男人肌肌捅女人肌肌视频 | 99久久免费精品国产72精品九九 | 久久久久久久福利 | 欧美日韩国产高清一区二区三区 | 久久久国内 | 亚洲精品综合精品自拍 | 欧美一级淫片免费午夜视频 | 亚洲亚洲人成综合丝袜图片 | 亚洲第一天堂影院 | 午夜激情综合网 | 99re在线视频精品 | 超97免费人视频在线观看 | 无码被窝影院午夜看片爽爽JK | 欧美做受又硬又粗又大视频 | 国产精品视频xxx | 国产成人久久综合一区 | 色欲色欲天天天WWW亚洲伊 | 永久亚洲成a人片777777 | 55夜色66夜色国产精品视频 | 亚洲人成无码网站在线观看 | 男女精品视频 | 亚洲av无码成h人动漫网站系 | 久久亚洲精品无码爱剪辑 | 欧美日韩亚洲中文字幕一区二区三区 | 久久这里精品国产99丫e6 | 亚洲三区欧美一区国产二区 | 美女久久视频 |